
Scalable Distributed Consensus
to Support MPI Fault Tolerance?

Darius Buntinas
Argonne National Laboratory

Abstract. As system sizes increase, the amount of time in which an application can

run without experiencing a failure decreases. Exascale applications will need to address

fault tolerance. In order to support algorithm-based fault tolerance, communication li-

braries will need to provide fault-tolerance features to the application. One important

fault-tolerance operation is distributed consensus. This is used, for example, to collec-

tively decide on a set of failed processes. This paper describes a scalable, distributed

consensus algorithm that is used to support new MPI fault-tolerance features proposed

by the MPI 3 Forum’s fault-tolerance working group. The algorithm was implemented

and evaluated on a 4,096-core Blue Gene/P. The implementation was able to perform

a full-scale distributed consensus in 305 µs and scaled logarithmically.

1 Introduction

As process counts in applications grow toward exascale, the length of time an
application can run without experiencing a failure, known as the mean time
between failures (MTBF), decreases. Applications will need to be fault tolerant in
order to be useful on future exascale machines. Checkpointing can provide fault
tolerance to an application without the need to modify it As the failure frequency
increases, however, checkpoints will need to be taken more often, decreasing the
amount of useful work the application can perform between failures.

Whereas checkpointing provides fault tolerance to an application in a trans-
parent manner, when using algorithm-based fault tolerance (ABFT) [1][3][4], the
application is aware of faults and handles them explicitly. The fault-tolerance
working group of the MPI 3 Forum has been working on a proposal [5], that
adds fault-tolerance features to MPI in order to support ABFT applications.
The proposal defines the behavior of an MPI library if processes fail. For ex-
ample, existing operations such as MPI Comm split are now required to either
succeed at every process or return an error at every process, even if processes
fail before or during the operation. The proposal also introduces new functions,
such as MPI Comm validate all, that require all processes to return the same list
of failed processes. A distributed consensus algorithm is needed to implement
these operations.

This paper presents a scalable, fault tolerant, distributed consensus algorithm
used to implement the MPI Comm validate all function. The MPI Comm validate
all implementation is evaluated on a 4,096-core IBM Blue Gene/P machine and
shows O(log n) scaling.
? This work was supported in part by the Office of Advanced Scientific Computing

Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357.

2 Algorithm

We present the distributed consensus algorithm as it would be used in the
MPI Comm validate all operation. However, the algorithm could also be used
in other operations requiring distributed consensus, such as MPI Comm split. In
this section, we give a brief overview of the algorithm at a high level. A detailed
description of the algorithm can be found in [2].

The MPI Comm validate all function uses distributed consensus to decide on
a set of failed processes, which must contain every failed process known by any
participating process at the time the function is called. The same set of failed
processes must be returned by the function at every process. If a process fails
during the MPI Comm validate all operation (i.e., after the first process calls the
function and before the first process returns), the set of failed processes returned
may or may not contain the failed processes.

The algorithm is similar to the three-phase commit algorithm except that,
rather than sending and receiving individual messages, a reliable broadcast algo-
rithm is used to send and collect messages. In the BALLOTING phase, after the
root is chosen, the root creates a ballot containing the set of failed processes and
broadcasts it to the rest of the processes. Once the processes receive the ballot,
the responses to the ballot are collected back up the tree. If all the processes
have accepted the ballot, the algorithm enters the COMMIT phase; otherwise a
new ballot is generated, and the BALLOTING phase is repeated. In the COMMIT
phase the root broadcasts a commit message. Once all processes receive the com-
mit message, acknowledgments are collected back up to the root. The last phase
is the ALL COMMIT phase. In this phase the root broadcasts the all-commit
message. Once a process receives the all-commit message, it can return from the
MPI Comm validate all function.

3 Performance Evaluation

To evaluate the validate-all operation, we implemented it as an MPI program.
This allowed us to evaluate the operation at a large scale on a Blue Gene/P
without modifying the MPI implementation. We expect the performance of the
operation implemented this way to be an upper bound on the performance of
the operation if it were integrated into an MPI implementation. The evaluation
was performed at Argonne National Laboratory on Surveyor, a Blue Gene/P
with 1,024 quad-core nodes.

Figure 1 shows the results of the evaluation. As expected, the operation scales
logarithmically. For comparison, we evaluated the time taken to perform a com-
munication pattern similar to that of the validate-all operation using broadcast
and reduction operations. The figure shows the results with optimized collectives
using the Blue Gene/P collective tree network and with unoptimized collectives
using the same torus network that the validate-all operation uses. At full scale,
the validate-all implementation took 305 µs to perform the operation, which is
1.66 times slower than performing a similar communication pattern with unop-
timized collectives. We expect the performance of the validate-all algorithm to

 0

 50

 100

 150

 200

 250

 300

 350

 0 512
 1024

 1536

 2048

 2560

 3072

 3584

 4096

L
a

te
n

c
y
 (

µ
s
e

c
)

Number of processes

validate-all
unopt-collectives

collectives

Fig. 1. Comparison of the validate-all
operation with collectives operations.

 0

 50

 100

 150

 200

 250

 300

 350

 0 512
 1024

 1536

 2048

 2560

 3072

 3584

 4096

L
a

te
n

c
y
 (

µ
s
e

c
)

Number of processes

strict
nonstrict

Fig. 2. Comparison of validate-all using
strict and loose semantics.

improve when the operation is integrated into the MPI implementation, making
the algorithm more responsive to incoming messages.

We also evaluated the performance of the operation with loose semantics, as
described in the proposal [5]. Figure 2 shows the comparison. The loose imple-
mentation performs the operation 133 µs faster at full scale than does the strict
implementation (which is 1.78 times as fast). Depending on the requirements
of the application and the frequency at which the application calls validate-all,
using the loose implementation can provide some performance improvement.

4 Conclusion

This paper presented a scalable distributed consensus algorithm used to imple-
ment the MPI Comm validate all operation proposed by the MPI 3 fault-tolerance
working group. The algorithm was evaluated on a 4,096-core Blue Gene/P ma-
chine and was shown to be extremely scalable. The implementation was able to
perform a full-scale validate-all operation in 305 µs and scaled logarithmically.

Using the loose implementation saved only 133 µs over the strict implemen-
tation. Therefore, unless the application performs many validate-all operations,
relaxing the semantics is unlikely to improve the overall performance of the
application significantly.

References

1. Anfinson, J., Luk, F.T.: A linear algebraic model of algorithm-based fault tolerance.
IEEE Transactions on Computing 37, 1599–1604 (1988)

2. Buntinas, D.: Scalable distributed consensus to support MPI fault tolerance. Tech.
Rep. ANL/MCS-TM-314, Argonne National Laboratory (Jun 2011)

3. Chen, Z., Dongarra, J.: Algorithm-based fault tolerance for fail-stop failures. IEEE
Transactions on Parallel and Distributed Systems 19(12) (Dec 2008)

4. Chen, Z., Dongarra, J.: Highly scalable self-healing algorithms for high performance
scientific computing. IEEE Transactions on Computers (Jul 2009)

5. Fault Tolerance Working Group: Run-though stabilization proposal, http://svn.
mpi-forum.org/trac/mpi-forum-web/wiki/ft/run_through_stabilization

